Shipping Weight:
.649|Dimensions:
7.06 x .77 x 9.25 inches
Share
Description
Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.
With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning.
You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network.
In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.
About the Author
Ronald T. Kneusel is a data scientist who builds deep-learning (AI) systems, as well as extensive experience with medical imaging and the development of medical devices. He earned a PhD in machine learning from the University of Colorado, Boulder, has nearly 20 years of machine learning experience in industry, and is presently pursuing deep-learning projects with L3Harris Technologies, Inc. Kneusel is also the author of Random Numbers and Computers (Springer 2018), in addition to Math for Deep Learning, Practical Deep Learning, and Strange Code—all published by No Starch Press.
Please use your Email instead of your Username to login.
Caution: Deleting Your Account will permanently remove all associated data, which cannot be recovered.
Your cart's total less than the Gift Card value. If you checkout now, the remaining amount will elapse as Gift Cards are for one time use only. Continue Shopping to fully consume your Gift Card.
The Transaction was unsuccessfull. Please try again.